#### Probabilistic classification

Machine Learning

Hamid R Rabiee – Zahra Dehghanian Spring 2025



## Topics

- Probabilistic approach
  - Bayes decision theory
  - Generative models
    - Gaussian Bayes classifier
    - Naïve Bayes



#### Classification problem: probabilistic view

- Given: Training set
  - labeled set of N input-output pairs  $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$
  - ▶  $y \in \{1, ..., K\}$
- Goal: Given an input x, assign it to one of K classes
- Examples:
  - Spam filter
  - Handwritten digit recognition
  - **...**



#### **Definitions**

- Posterior probability:  $p(C_k|x)$
- Likelihood or class conditional probability:  $p(x|\mathcal{C}_k)$
- Prior probability:  $p(C_k)$

$$p(x)$$
: pdf of feature vector  $x$  ( $p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k)$ )

 $p(x|\mathcal{C}_k)$ : pdf of feature vector x for samples of class  $\mathcal{C}_k$ 

 $p(\mathcal{C}_k)$ : probability of the label be  $\mathcal{C}_k$ 



# Bayes decision rule

K=2

If 
$$P(C_1|x) > P(C_2|x)$$
 decide  $C_1$  otherwise decide  $C_2$ 

$$p(error|\mathbf{x}) = \begin{cases} p(C_2|\mathbf{x}) & \text{if we decide } C_1 \\ P(C_1|\mathbf{x}) & \text{if we decide } C_2 \end{cases}$$

If we use Bayes decision rule:

$$P(error|\mathbf{x}) = \min\{P(\mathcal{C}_1|\mathbf{x}), P(\mathcal{C}_2|\mathbf{x})\}\$$

Using Bayes rule, for each x, P(error|x) is as small as possible and thus this rule minimizes the probability of error



## Optimal classifier

 The optimal decision is the one that minimizes the expected number of mistakes

We show that Bayes classifier is an optimal classifier



#### Bayes decision rule Minimizing misclassification rate

▶ Decision regions:  $\mathcal{R}_k = \{x | \alpha(x) = k\}$ 

K = 2

All points in  $\mathcal{R}_k$  are assigned to class  $\mathcal{C}_k$ 

$$p(error) = E_{x,y}[I(\alpha(x) \neq y)]$$

$$= p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$$

$$= \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) dx + \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) dx$$

$$= \int_{\mathcal{R}_1} p(\mathcal{C}_2|x)p(x) dx + \int_{\mathcal{R}_2} p(\mathcal{C}_1|x)p(x) dx$$

Choose class with highest  $p(C_k|\mathbf{x})$  as  $\alpha(\mathbf{x})$ 



#### Bayes minimum error

Bayes minimum error classifier:

$$\min_{\alpha(.)} E_{x,y}[I(\alpha(x) \neq y)]$$
 Zero-one loss

 If we know the probabilities in advance then the above optimization problem will be solved easily.

• 
$$\alpha(\mathbf{x}) = \underset{\mathbf{y}}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x})$$

• In practice, we can estimate p(y|x) based on a set of training samples  $\mathcal D$ 



#### Bayes theorem

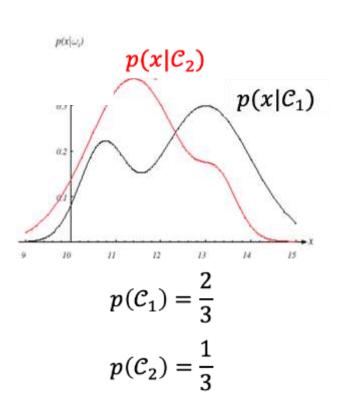
- Posterior
  Posterior  $p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$
- Posterior probability:  $p(C_k|x)$
- Likelihood or class conditional probability:  $p(x|\mathcal{C}_k)$
- Prior probability:  $p(C_k)$

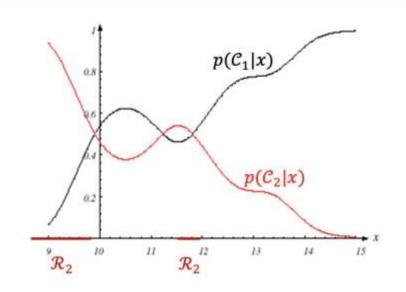
p(x): pdf of feature vector x ( $p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k)$ )  $p(x|\mathcal{C}_k)$ : pdf of feature vector x for samples of class  $\mathcal{C}_k$   $p(\mathcal{C}_k)$ : probability of the label be  $\mathcal{C}_k$ 



## Bayes decision rule: example

• Bayes decision: Choose the class with highest  $p(C_k|x)$ 





$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$
$$p(\mathbf{x}) = p(C_1)p(\mathbf{x}|C_1) + p(C_2)p(\mathbf{x}|C_2)$$



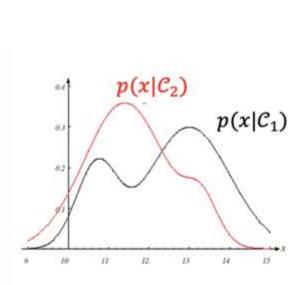
## Bayesian decision rule

- If  $P(C_1|x) > P(C_2|x)$  decide  $C_1$  otherwise decide  $C_2$  Equivalent
- If  $\frac{p(x|\mathcal{C}_1)P(\mathcal{C}_1)}{p(x)} > \frac{p(x|\mathcal{C}_2)P(\mathcal{C}_2)}{p(x)}$  decide  $\mathcal{C}_1$  otherwise decide  $\mathcal{C}_2$  Equivalent
- If  $p(x|C_1)P(C_1) > p(x|C_2)P(C_2)$  decide  $C_1$  otherwise decide  $C_2$



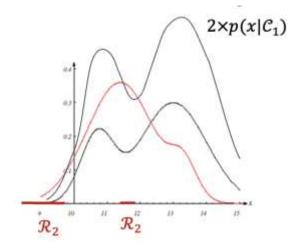
# Bayes decision rule: example

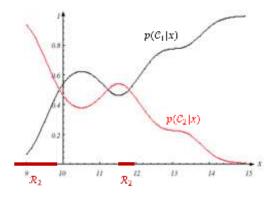
• Bayes decision: Choose the class with highest  $p(C_k|x)$ 



$$p(\mathcal{C}_1) = \frac{2}{3}$$

$$p(\mathcal{C}_2) = \frac{1}{3}$$





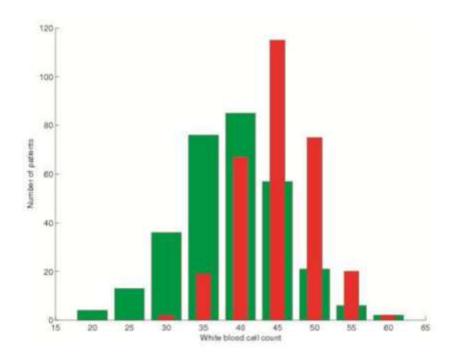


## Bayes Classier

- Simple Bayes classifier: estimate posterior probability of each class
- What should the decision criterion be?
  - Choose class with highest  $p(C_k|x)$
- The optimal decision is the one that minimizes the expected number of mistakes



#### white blood cell count



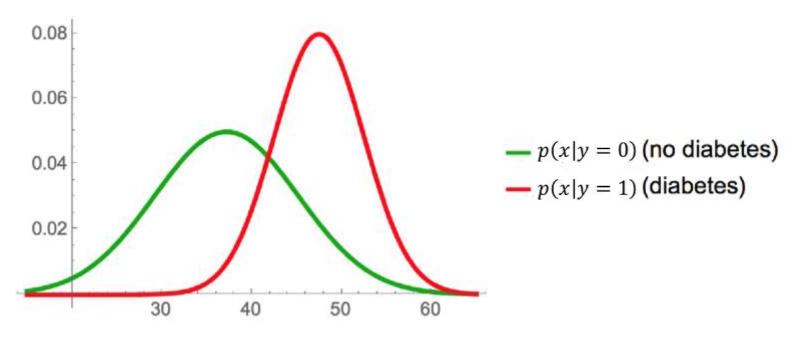
This example has been adopted from Sanja Fidler's slides, University of Toronto, CSC411



- Doctor has a prior p(y = 1) = 0.2
  - Prior: In the absence of any observation, what do I know about the probability of the classes?
- A patient comes in with white blood cell count x
- Does the patient have diabetes p(y = 1|x)?
  - given a new observation, we still need to compute the posterior



$$p(x = 40|y = 0)P(y = 0) > p(x = 40|y = 1)P(y = 1)$$



This example has been adopted from Sanja Fidler's slides, University of Toronto, CSC411



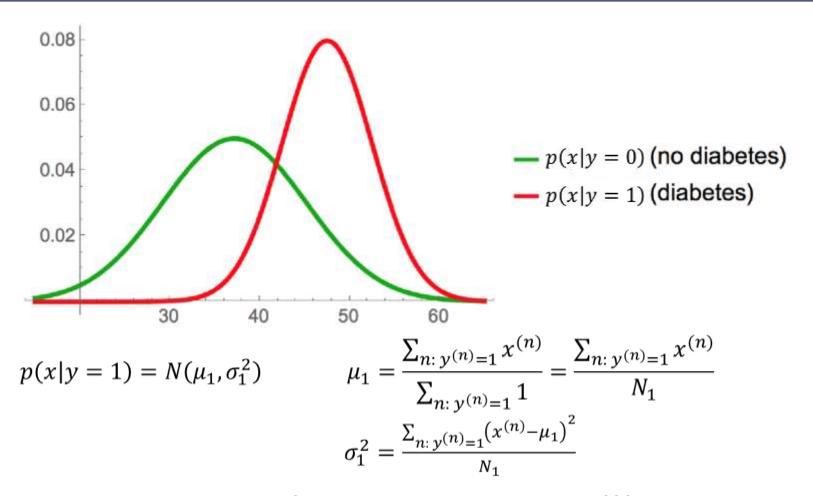
#### Estimate probability densities from data

- If we assume Gaussian distributions for p(x|y=0) and p(x|y=1)
- Recall that for samples  $\{x^{(1)}, ..., x^{(N)}\}$ , if we assume a Gaussian distribution, the MLE estimates will be

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$\sigma^{2} = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \mu)^{2}$$

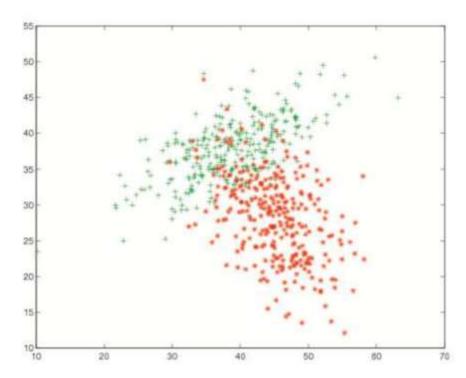




This example has been adopted from Sanja Fidler's slides, University of Toronto, CSC411



Add a second observation: Plasma glucose value



This example has been adopted from Sanja Fidler's slides, University of Toronto, CSC411



## Naïve Bayes classifier

- Generative methods
  - High number of parameters
- Assumption: Conditional independence

$$p(\mathbf{x}|C_k) = p(x_1|C_k) \times p(x_2|C_k) \times \dots \times p(x_d|C_k)$$



## Naïve Bayes classifier

• In the decision phase, it finds the label of x according to:

$$\underset{k=1,\dots,K}{\operatorname{argmax}} p(C_k | \mathbf{x})$$

$$\underset{k=1,\dots,K}{\operatorname{argmax}} p(C_k) \prod_{i=1}^{n} p(x_i | C_k)$$

$$p(\mathbf{x}|C_k) = p(x_1|C_k) \times p(x_2|C_k) \times \dots \times p(x_d|C_k)$$
$$p(C_k|\mathbf{x}) \propto p(C_k) \prod_{i=1}^n p(x_i|C_k)$$



## Naïve Bayes: discrete example

• 
$$p(h) = 0.3$$

• 
$$p(d|h) = \frac{1}{3}$$
  
•  $p(s|h) = \frac{2}{3}$ 

• 
$$p(s|h) = \frac{2}{3}$$

• 
$$p(d|\bar{h}) = \frac{2}{7}$$

• 
$$p(s|\bar{h}) = \frac{2}{7}$$

$$H = Yes \equiv h$$
  
 $H = No \equiv \bar{h}$ 

| Diabetes (D) | Smoke (S) | Heart<br>Disease (H) |
|--------------|-----------|----------------------|
| Y            | N         | Y                    |
| Y            | N         | N                    |
| N            | Y         | N                    |
| N            | Y         | N                    |
| N            | N         | N                    |
| N            | Y         | Y                    |
| N            | N         | N                    |
| N            | Y         | Y                    |
| N            | N         | N                    |
| Y            | N         | N                    |



# Naïve Bayes: discrete example

• 
$$p(h) = 0.3$$

• 
$$p(d|h) = \frac{1}{3}$$

• 
$$p(s|h) = \frac{2}{3}$$

• 
$$p(d|\bar{h}) = \frac{2}{7}$$

• 
$$p(s|\bar{h}) = \frac{2}{7}$$

$$H = Yes \equiv h$$
  
 $H = No \equiv \bar{h}$ 

| Diabetes (D) | Smoke (S) | Heart<br>Disease (H) |
|--------------|-----------|----------------------|
| Y            | N         | Y                    |
| Y            | N         | N                    |
| N            | Y         | N                    |
| N            | Y         | N                    |
| N            | N         | N                    |
| N            | Y         | Y                    |
| N            | N         | N                    |
| N            | Y         | Y                    |
| N            | N         | N                    |
| Y            | N         | N                    |

- Decision on  $x = [d, \bar{s}]$  (a person that has diabetes but does not smoke):
  - $p(h|\mathbf{x}) \propto p(h)p(d|h)p(\bar{s}|h) = 1/14$
  - $p(\bar{h}|\mathbf{x}) \propto p(\bar{h})p(d|\bar{h})p(\bar{s}|\bar{h}) = 1/6$
  - Thus decide H = No



## Naïve Bayes classifier

- Finds d univariate distributions  $p(x_1|C_k), \cdots, p(x_d|C_k)$  instead of finding one multi-variate distribution  $p(x|C_k)$ 
  - Example 1: For Gaussian class-conditional density  $p(x|C_k)$ , it finds d+d (mean and sigma parameters on different dimensions) instead of  $d+\frac{d(d+1)}{2}$  parameters
  - Example 2: For Bernoulli class-conditional density  $p(x|C_k)$ , it finds d (mean parameters on different dimensions) instead of  $2^d-1$  parameters
- It first estimates the class conditional densities  $p(x_1|C_k), \cdots, p(x_d|C_k)$  and the prior probability  $p(C_k)$  for each class  $(k=1,\ldots,K)$  based on the training set.



#### Multivariate Gaussian

• For samples  $\{x^{(1)}, ..., x^{(N)}\}$ , if we assume a multivariate Gaussian distribution, the MLE estimates will be:

$$\boldsymbol{\mu} = \frac{\sum_{n=1}^{N} \boldsymbol{x}^{(n)}}{N}$$

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{T}$$



#### Multivariate Gaussian

• Multivariate Gaussian distributions for 
$$p(x|\mathcal{C}_k)$$
: 
$$p(x|y=k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} \exp\{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1} (x-\mu_k)\}$$

$$k = 1,2$$

• Prior distribution p(y):

• 
$$p(y = 1) = \pi$$
,  $p(y = 0) = 1 - \pi$ 



#### Multivariate Gaussian

#### Maximum likelihood estimation (D

$$= \{ (x^{(n)}, y^{(n)}) \}_{n=1}^{N} ):$$

• 
$$\pi = \frac{N_1}{N}$$

• 
$$\mu_1 = \frac{\sum_{n=1}^{N} y^{(n)} x^{(n)}}{N_1}$$
,  $\mu_2 = \frac{\sum_{n=1}^{N} (1 - y^{(n)}) x^{(n)}}{N_2}$ 

• 
$$\Sigma_1 = \frac{1}{N_1} \sum_{n=1}^{N} y^{(n)} (x^{(n)} - \mu) (x^{(n)} - \mu)^T$$

• 
$$\Sigma_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - y^{(n)}) (x^{(n)} - \mu) (x^{(n)} - \mu)^T$$

$$y \in \{0,1\}$$

$$N_1 = \sum_{n=1}^N y^{(n)}$$

$$N_2 = N - N_1$$



# Decision boundary for Gaussian Bayes classifier

$$p(\mathcal{C}_1|\mathbf{x}) = p(\mathcal{C}_2|\mathbf{x})$$

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$$

$$\ln p(\mathcal{C}_1|\mathbf{x}) = \ln p(\mathcal{C}_2|\mathbf{x})$$

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) - \ln p(\mathbf{x})$$
  
=  $\ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2) - \ln p(\mathbf{x})$ 



# Decision boundary for Gaussian Bayes classifier

• 
$$p(\mathcal{C}_1|\boldsymbol{x}) = p(\mathcal{C}_2|\boldsymbol{x})$$

$$p(\mathcal{C}_k|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\boldsymbol{x})}$$

$$\ln p(\mathcal{C}_1|\boldsymbol{x}) = \ln p(\mathcal{C}_2|\boldsymbol{x})$$

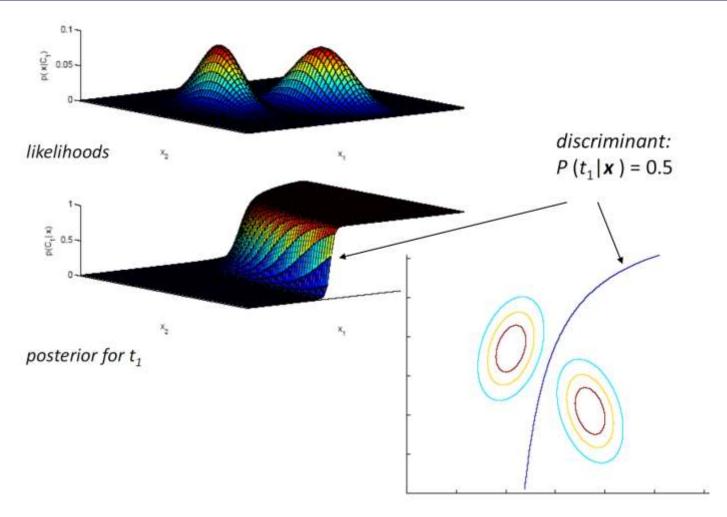
$$\ln p(\boldsymbol{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) - \ln p(\boldsymbol{x})$$
  
= \ln p(\boldsymbol{x}|\mathcal{C}\_2) + \ln p(\mathcal{C}\_2) - \ln p(\boldsymbol{x})

$$\ln p(\boldsymbol{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) = \ln p(\boldsymbol{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2)$$

$$\frac{\ln p(\mathbf{x}|\mathcal{C}_k)}{= -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\mathbf{\Sigma}_k| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)$$



## Decision boundary





#### Shared covariance matrix

m P When classes share a single covariance matrix  $m \Sigma = m \Sigma_1 = m \Sigma_2$ 

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\}$$

$$k = 1,2$$

$$p(C_1) = \pi, \quad p(C_2) = 1 - \pi$$



#### Likelihood

• 
$$\prod_{n=1}^{N} p(\mathbf{x}^{(n)}, y^{(n)}; \pi, \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma})$$

$$= \prod_{n=1}^{N} p(\mathbf{x}^{(n)} | y^{(n)}; \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}) p(y^{(n)}; \pi)$$



#### Shared covariance matrix

\* Maximum likelihood estimation  $(D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n)$ :

$$\mu_1 = \frac{\sum_{n=1}^{N} y^{(n)} x^{(n)}}{N_1}$$

$$\mu_2 = \frac{\sum_{n=1}^{N} (1 - y^{(n)}) x^{(n)}}{N_2}$$

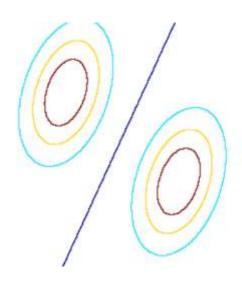
$$\Sigma = \frac{1}{N} \left( \sum_{n \in C_1} (\mathbf{x}^{(n)} - \boldsymbol{\mu}_1) (\mathbf{x}^{(n)} - \boldsymbol{\mu}_1)^T + \sum_{n \in C_2} (\mathbf{x}^{(n)} - \boldsymbol{\mu}_2) (\mathbf{x}^{(n)} - \boldsymbol{\mu}_2)^T \right)$$



# Decision boundary when shared covariance matrix

•  $\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) = \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2)$ 

$$\ln p(\mathbf{x}|\mathcal{C}_k) = -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\mathbf{\Sigma}| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)$$





## Multi-class Bayes decision rule

- Multi-class problem: Probability of error of Bayesian decision rule
  - Simpler to compute the probability of correct decision

$$P(error) = 1 - P(correct)$$

$$P(Correct) = \sum_{i=1}^{K} \int_{\mathcal{R}_i} p(\mathbf{x}, \mathcal{C}_i) d\mathbf{x}$$

$$= \sum_{i=1}^{K} \int_{\mathcal{R}_i} p(\mathcal{C}_i | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

 $\mathcal{R}_i$ : the subset of feature space assigned to the class  $\mathcal{C}_i$  using the classifier



#### Bayes minimum error

Bayes minimum error classifier:

$$\min_{\alpha(.)} E_{x,y}[I(\alpha(x) \neq y)]$$
 Zero-one loss

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$



## Minimizing Bayes risk (expected loss)

$$E_{x,y}[L(\alpha(x),y)]$$

$$= \int \sum_{j=1}^{K} L(\alpha(x),C_j)p(x,C_j)dx$$



## Minimizing Bayes risk (expected loss)

$$E_{x,y}[L(\alpha(x),y)]$$

$$= \int \sum_{j=1}^{K} L(\alpha(x), C_j) p(x, C_j) dx$$

$$= \int p(x) \sum_{j=1}^{K} L(\alpha(x), C_j) p(C_j|x) dx$$

for each x minimize it that is called conditional risk



## Minimizing Bayes risk (expected loss)

$$E_{x,y}[L(\alpha(x), y)]$$

$$= \int \sum_{j=1}^{K} L(\alpha(x), C_j) p(x, C_j) dx$$

$$= \int p(x) \sum_{j=1}^{K} L(\alpha(x), C_j) p(C_j | x) dx$$

for each x minimize it that is called conditional risk

▶ Bayes minimum loss (risk) decision rule:  $\hat{\alpha}(x)$ 

$$\hat{\alpha}(\mathbf{x}) = \underset{i=1,...,K}{\operatorname{argmin}} \sum_{j=1}^{K} \underline{L_{ij}} p(\mathcal{C}_{j}|\mathbf{x})$$

The loss of assigning a sample to  $C_i$  where the correct class is  $C_j$ 



# Minimizing expected loss: special case (loss = misclassification rate)

- Problem definition for this special case:
  - If action  $\alpha(x) = i$  is taken and the true category is  $C_j$ , then the decision is correct if i = j and otherwise it is incorrect.
    - Zero-one loss function:

$$L_{ij} = 1 - \delta_{ij} = \begin{cases} 0 & i = j \\ 1 & o.w. \end{cases}$$

$$\hat{\alpha}(\mathbf{x}) = \underset{i=1,...,K}{\operatorname{argmin}} \sum_{j=1}^{K} L_{ij} p(\mathcal{C}_j | \mathbf{x})$$



# Minimizing expected loss: special case (loss = misclassification rate)

- Problem definition for this special case:
  - If action  $\alpha(x) = i$  is taken and the true category is  $C_j$ , then the decision is correct if i = j and otherwise it is incorrect.
    - Zero-one loss function:

$$L_{ij} = 1 - \delta_{ij} = \begin{cases} 0 & i = j \\ 1 & o. w. \end{cases}$$

$$\hat{\alpha}(\mathbf{x}) = \underset{i=1,...,K}{\operatorname{argmin}} \sum_{j=1}^{K} L_{ij} p(\mathcal{C}_j | \mathbf{x})$$

= argmin<sub>i=1,...,K</sub> 
$$0 \times p(C_i|\mathbf{x}) + \sum_{j \neq i} p(C_j|\mathbf{x})$$

$$= \underset{i=1,\dots,K}{\operatorname{argmin}} 1 - p(\mathcal{C}_i|\boldsymbol{x}) = \underset{i=1,\dots,K}{\operatorname{argmax}} p(\mathcal{C}_i|\boldsymbol{x})$$



#### Probabilistic classifiers

- How can we find the probabilities required in the Bayes decision rule?
- Probabilistic classification approaches can be divided in two main categories:
  - Generative
    - Estimate pdf  $p(x, C_k)$  for each class  $C_k$  and then use it to find  $p(C_k|x)$ 
      - $\Box$  or alternatively estimate both pdf  $p(x|\mathcal{C}_k)$  and  $p(\mathcal{C}_k)$  to find  $p(\mathcal{C}_k|x)$
  - Discriminative
    - ▶ Directly estimate  $p(C_k|x)$  for each class  $C_k$



## Generative approach

- Inference stage
  - Determine class conditional densities  $p(x|\mathcal{C}_k)$  and priors  $p(\mathcal{C}_k)$
  - Use the Bayes theorem to find  $p(C_k|x)$

- Decision stage: After learning the model (inference stage), make optimal class assignment for new input
  - if  $p(C_i|x) > p(C_j|x) \quad \forall j \neq i$  then decide  $C_i$



#### Probabilistic discriminant functions

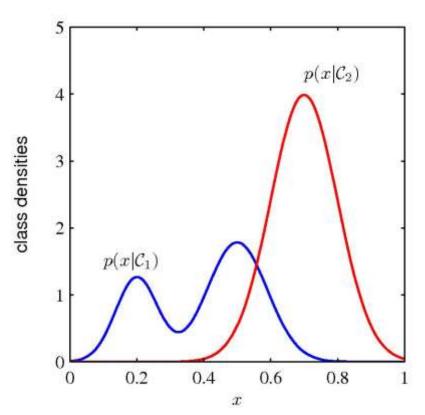
- Discriminant functions: A popular way of representing a classifier
  - A discriminant function  $f_i(x)$  for each class  $C_i$  (i = 1, ..., K):
    - x is assigned to class  $C_i$  if:

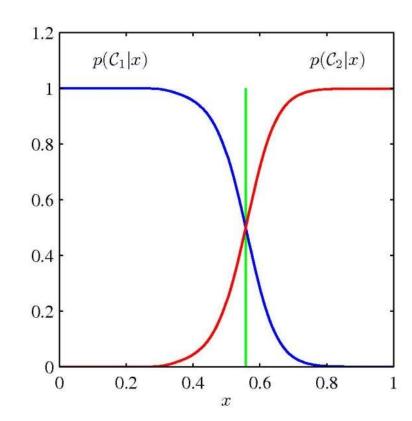
$$f_i(\mathbf{x}) > f_j(\mathbf{x}) \ \forall j \neq i$$

- Representing Bayesian classifier using discriminant functions:
  - Classifier minimizing error rate:  $f_i(\mathbf{x}) = P(C_i|\mathbf{x})$
  - Classifier minimizing risk:  $f_i(\mathbf{x}) = -\sum_{j=1}^K L_{ij} p(\mathcal{C}_j | \mathbf{x})$



### Discriminative vs. generative approach

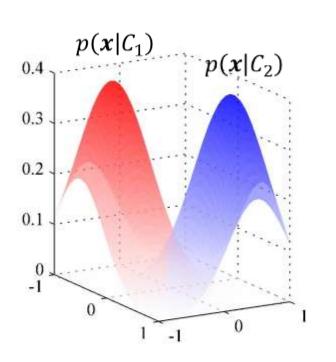


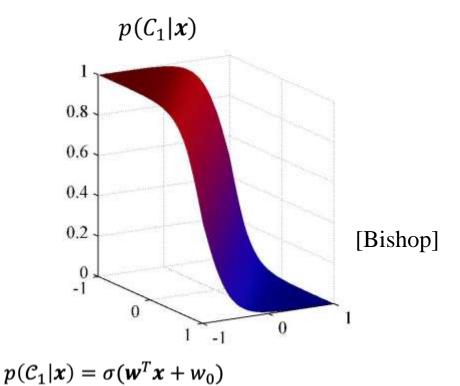


[Bishop]



### Class conditional densities vs. posterior





$$\sigma(z) = \frac{1}{1 + \exp(z)}$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

$$w_0 = -\frac{1}{2}\boldsymbol{\mu}_1^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(C_1)}{p(C_2)}$$



#### Feed back

? <a href="https://forms.gle/vKRbyVVsWRKcZuqr8">https://forms.gle/vKRbyVVsWRKcZuqr8</a>



#### Resources

- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 4.2-4.3.
- Course CE-717, Dr. M.Soleymani

